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Abstract

The current thesis addresses a class of problem arising in the modeling of scattering

of acoustic waves through an expansion chamber of arbitrary configuration. The

physical problem is governed by Helmholtz equation and has bounding wall prop-

erties of guiding channel to be soft-soft, rigid-rigid and soft-rigid. The Multimodal

technique is applied to solve the governing boundary value problem. The solution

is projected on the local transverse modes to produce the coupled mode equa-

tions. The admittance matrix is introduced to convert the coupled mode equations

to Riccati equation which is integrated by using the Magnus-Möbius expansion

method.
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Chapter 1

Introduction

The computation of wave propagation in waveguides is a classic topic in many

domains of physics including electromagnetics and acoustics [1] with increasing

interest in the recent two decades due to the development of quantum waveguides

[2, 3] and of elastic waveguides [4, 5]. The solutions of the Helmholtz equation

in waveguides can be calculated using traditional numerical approaches such as

finite element methods or boundary element methods and analytic approaches,

for instance see [6–34]. These approaches work by projecting the solution to the

waveguide local transverse modes and then solving the coupled mode equations

by using some numerical technique. When we solve coupled mode equations two

issues arise; first, they are numerically unstable due to the presence of evanescent

modes and second the emerging initial value problems are not well posed because

of radiation conditions.

In the multimodal context, this impossibility leads to the introduction of an

admittance matrix [35, 36] which corresponds to the Dirichlet-to-Neumann (DtN)

operator. The radiation condition (the outlet boundary condition) is represented

by this matrix which is regulated by the Riccati equation. It allows us to solve

the Helmholtz equation in waveguides with an efficient and stable numerical

technique [4, 5, 35–38]. At high frequencies the Riccati equation has a lot of

quasi-singularities, because of a “Magnus-Möbius scheme” [39] that we conduct

with a Magnus exponential approach [40] numerical integration over singularities

1



Introduction 2

is conceivable.

An exponential representation x(t) = eΠ(t)x0 of solution of a first order linear

differential equation revealed by Magnus in 1954 [41]. His work was later called

Magnus series expansion. Since then, the Magnus series expansion has been

successfully applied to many fields to explain different physical situation [42–44].

However, Magnus has not proved convergence and he has not illuminated the

general form of the Π(t) expansion.

In 1997, Iserles and Norsett [45] have successffully completed the both tasks. Some

of the work on the convergence of Magnus series examined by Moan and Niesen

[46]. Magnus series have taken attention in the theory of differential equation [47]

and control theory [48]. In 1999, Iserles et al. [49] made a study on the solution of

linear differential equation using Lie groups and investigated the solution of the

first order linear homogenous differential equation x′ = H(t)x.

In 2006, Cases and Iserles [50] examined and introduced the algorithim for nonlinear

differential equation. In 2012, Magnus series expansion method are used to solve

the initial value problem which are given by Blanes and ponsoda [51]. In 2015,

Atay et al. [52] applied Magnus series expansion method to homogeneous linear

stiff ordinary differential systems. Later in 2016, Atay et al. [53] conducted

a study on the Magnus series expansion method for inhomogeneous linear stiff

ordinary differential systems . Köme et al. [54] applied the Magnus series expansion

method to the nonlinear Liénard differential system and the isothermal gas sphere

equation system . The aim of this thesis is to discuss acoustic scattering through a

waveguide having expansion chamber with arbitrary configuration. The boundary

wall conditions may be rigid-rigid, rigid-soft or soft-soft. The study in continuation

of the work carried by Pagneux [55] with addition to soft-soft and rigid-soft settings.



Chapter 2

Basic Definitions

The aim of this chapter is to describe some basic concepts that are useful to

understand the work done in rest of the chapters.

Definition 2.1. Topological Manifold

“A topological manifold is a Hausdorff, second countable, locally Euclidean Hausdorff

space. It is said to be of dimension n if it is locally Euclidean of dimension n.”

This definition is taken from [56].

Definition 2.2. Differentiable Manifold

“ Let M be a differentiable manifold. A Set A ⊂ M is called open if for each a ∈ A

there is an admissible local chart (U, φ) such that a ∈ U and U ⊂ A.”

This definition is taken from [57].

Definition 2.3. Lie Group

“ A Lie group is a smooth manifold G which is also a group and such that the

group product

G×G→ G

and the inverse map G×G.”

This definition is taken from [58].

3



Basic Definitions 4

Definition 2.4. Lie Algebra

“ A finite-dimensional real or complex Lie algebra is a finite-dimensional real

or complex vector space g, togather with a map [·, ·] from g× g into g, with the

following properties:

1. [·, ·] is bilinear.

2. [·, ·] is skew symmetric: [X, Y ] = −[Y,X] for all X, Y ∈ g.

3. The Jacobi identity holds:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

for all X, Y, Z ∈ g”.

This definition is taken from [58].

Definition 2.5. Lie Group Homomorphism and Isomorphism

“ Let G and H be matrix Lie groups. A map φ from G to H is called a Lie group

homomorphism if

1. φ is a group homomorphism

2. φ is continous.

If, in addition, φ is one-to-one and onto and the invers map φ−1 is continuous, then

φ is called a Lie group isomorphism.”

This definition is taken from [58].

Definition 2.6. Lie Algebra Homomorphism and Isomorphism

“ If g and h are Lie algebras, then a linear map φ : g→ h is called a Lie algebra

homomorphism if φ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ g. If, in addition, φ is

one-to-one and onto, then φ is called a Lie algebra isomorphism.”

This definition is taken from [58].
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Definition 2.7. Adjoint Operator

“ If g is a Lie algebra and X is element of g, define a linear map adX : g→ g by

adX(Y ) = [X, Y ].

The map X → adX is the adjoint map or adjoint operator”.

This definition is taken from [58].

Definition 2.8. Adjoint Notation

“ Let G be a matrix Lie group, with Lie algebra g. Then for each A ∈ G, define a

linear map AdA : g→ g by the formula

AdA(X) = AXA−1.”

This definition is taken from [58].

Definition 2.9. Derivative of Exponential Mapping

The differential of the exponential map can defined as

d

dt
exp(A(t)) = d expA(t) A

′(t) exp(A(t)), (2.1)

where

d expA =
exp(adA)− I

adA
. (2.2)

Here I denotes identity matrix and adA stands for the adjoint of matrix A.

Accordingly, inverse of d expA, denoted by d exp−1
A is defined as

d exp−1
A =

adA
exp(adA)− I

.

As we know

ex − 1

x
=
∞∑
j=0

xj

(j + 1)!
.

Replacing x with adA and 1 with I
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eadA − 1

adA
=
∞∑
j=0

adjA
(j + 1)!

. (2.3)

On using (2.3) into (2.2)

d expA =
∞∑
j=0

adjA
(j + 1)!

.

For any matrix C

d expA(C) =
∞∑
j=0

adjA
(j + 1)!

(C)

= C +
1

2!
adAC +

1

3!
ad2

AC +
1

4!
ad3

AC + · · ·

= C +
1

2!
[A,C] +

1

3!
[A, [A,C]] +

1

4!
[A, [A, [A,C]]] + · · · .

(2.4)

For d exp−1
A , we note

x

ex − 1
= 1− 1

2
x+

1

12
x2 − 1

720
x4 + · · · ,

which gives

adA
exp(adA)− I

= 1− 1

2!
adA +

1

12
ad2

A −
1

720
ad4

A + · · · .

Therefore, for matrix C

d exp−1
A (C) =

adA
exp(adA)− I

(C)

= C − 1

2
[A,C] +

1

12
[A, [A,C]]− 1

720
[A, [A, [A,C]]] + · · ·

=
∞∑
j=0

Bj

j!
adjAC,

(2.5)

where B0 = 1, B1 = −1
2
, B2 = 1

6
, are the Bernoulli numbers [60].

This definition is taken from [59].



Chapter 3

Magnus Expansion Scheme for

Initial Value Problems

This chapter includes a comprehensive detail of Magnus method taken from different

sources [38, 40, 45, 49]. To understand the application of this scheme some initial

value problems are discussed.

3.1 Motivation

Here, our interest is to obtain the solution of a linear Lie group differential equation

of the form

X ′ = A(t)X, t ≥ 0, X(0) = X0 ∈ G, (3.1)

where X ∈ G and A ∈ g are matrices.

Equivalently to (3.1), the scalar formulation can be written as

x′ = a(t)x, t ≥ 0, x(0) = x0, (3.2)

where x(t) and a(t) are scalar functions corresponding to matrix functions X(t)

and A(t).

7



Magnus Expansion Scheme for Initial Value Problems 8

The solution of (3.2), can be written as

x(t) = exp

(∫ t

0

a(s) ds

)
x(0). (3.3)

However it is impossible to solve matrix function into scalar function because A(t1)

and A(t2) can not commute with each other for t1, t2 ≥ 0.

Solution of (3.1) is same as in the scalar form, then

X(t) = exp

(∫ t

0

A(s) ds

)
X(t0). (3.4)

For t1 and t2 (3.4) yields

X(t1) = exp

(∫ t1

t0

A(s) ds

)
X(t0), (3.5)

and

X(t2) = exp

(∫ t2

t1

A(s) ds

)
X(t1), (3.6)

by using (3.5) into (3.6), we get

X(t2) = exp

(∫ t2

t1

A(s) ds

)
exp

(∫ t1

t0

A(s) ds

)
X(t0),

X(t2) = CB, (3.7)

where

B = exp

(∫ t1

t0

A(s) ds

)
X(t0),

and

C = exp

(∫ t2

t1

A(s) ds

)
X(t0),

are matrices.

Now, we break (3.4), into two intervals as

X(t2) = exp

(∫ t1

t0

A(s) ds

)
exp

(∫ t2

t1

A(s) ds

)
X(t0),

X(t2) = BC. (3.8)
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On comparing (3.7) and (3.8), we investigate that BC = CB, but in general

BC 6= CB, which implies that solution of scalar differentional equation is not

suitable for matrix differential equation.

3.2 Magnus Series Expansion Method for Homo-

geneous Linear Differential Systems

The matrix form of differential equation can be solved by using Magnus series

expansion method. This method gives approximate solution. To explain the

procedure of Magnus series expansion method, we consider

X ′(t) = A(t)X(t), t ≥ 0, X(0) = Xo ∈ G, (3.9)

where A ∈ g and X ∈ G.

Assume the solution of (3.9) as

X = exp(Π(t))X0, (3.10)

where Π is matrix and is unknown.

Differentiating (3.10) with respect to variable t,

X ′ = (exp(Π))′Xo. (3.11)

Applying the definition of exponential map (2.1), we get

X ′ = d expΠ(Π′(t))X. (3.12)

On comparing (3.9) and (3.12)

(d expΠ(Π′)− A(t))X = 0.
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For non-trival solution X 6= 0, thus

d expΠ(Π′) = A(t). (3.13)

On multiplying d exp−1
Π on both side of (3.13), leads to

Π′ = d exp−1
Π (A(t)). (3.14)

On applying the definition (2.5), d exp−1
Π can be expressed as

Π′ =
∞∑
j=0

Bj

j!
adjΠ(A(t)). (3.15)

Integration of (3.15) will yield the value of Π. To integrate this Picard iteration

method will be applied.

3.3 Picard Iteration

Reconsider

X ′(t) = A(t)X(t), X(0) = I, 0 ≤ τ ≤ t. (3.16)

Integrating over 0 ≤ τ ≤ t,

d

dτ

∫ t

0

X(τ) dτ =

∫ t

0

A(τ)X(τ) dτ. (3.17)

From the fundamental theorem of calculus, we know

∫ b

a

f(t) dt = F (b)− F (a).

On applying fundamental theorem, (3.17) yields

X(t) = I +

∫ t

0

A(τ)X(τ) dτ. (3.18)
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For m = 1, 2, 3 · · · , the value can be generaly written as:

Xm+1(t) = I +

∫ t

0

A(τ)Xm(τ) dτ, 0 ≤ τ ≤ t. (3.19)

Equation (3.19) is called Picard iteration.

On integration (3.15) over 0 ≤ τ ≤ t, we yield the value of Π as

∫ t

0

Π′(t) dt =
∞∑
j=0

Bj

j!

∫ t

0

adj
Π[m](s)

A(s) ds,

Π(t)− Π(0) =
∞∑
j=0

Bj

j!

∫ t

0

adj
Π[m](s)

A(s) ds,

Π = O +
∞∑
j=0

Bj

j!

∫ t

0

adj
Π[m](s)

A(s) ds. (3.20)

We can write (3.20) in general form

Π[0] ≡ O,

Π[m+1] =
∞∑
j=0

Bj

j!

∫ t

0

adj
Π[m](s)

A(s) ds. (3.21)

We can find Π[1], Π[2], Π[3] · · · , by putting m = 0, 1, 2 · · · , into (3.21).

For m = 0, (3.21) gives

Π[1] =
B0

0!

∫ t

0

ad0
Π[0](s)A(s) ds,

or

Π[1] =

∫ t

0

ad0
OA(s) ds,

or

Π[1] =

∫ t

0

A(s1) ds1. (3.22)
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Likewise for m = 1, (3.21) gives

Π[2] =
B0

0!

∫ t

0

ad0
Π[1](s)A(s1) ds1 +

B1

1!

∫ t

0

ad1
Π[1](s)A(s1) ds1

+
B2

2!

∫ t

0

ad2
Π[1](s)A(s1) ds1 + · · · ,

or

Π[2] =

∫ t

0

A(s1) ds1 −
1

2

∫ t

0

[Π[1], A(s1)] ds1

+
1

12

∫ t

0

[Π[1], [Π[1], A(s1)]] ds1 + · · · ,

or

Π[2] =

∫ t

0

A(s1) ds1 −
1

2

∫ t

0

[

∫ s1

0

A(s2) ds2, A(s1)] ds1

+
1

12

∫ t

0

[

∫ s1

0

A(s2) ds2, [

∫ s1

0

A(s2) ds2, A(s1)]] ds1 · · · ,
(3.23)

and for m = 2, (3.21) corresponds

Π[3] =

∫ t

0

A(s1) ds1 −
1

2

∫ t

0

[

∫ s1

0

A(s2) ds2, A(s1)] ds1

+
1

12

∫ t

0

[

∫ s1

0

A(s2) ds2, [

∫ s1

0

A(s2) ds2, A(s1)]] ds1

− 1

24

∫ t

0

[

∫ s1

0

[

∫ s2

0

A(s3) ds3, [

∫ s2

0

A(s3) ds3, A(s2)]] ds2, A(s1)] ds1

− 1

24

∫ t

0

[

∫ s1

0

A(s2) ds2, [

∫ s1

0

[

∫ s2

0

A(s3) ds3, A(s2)] ds2, A(s1)]] ds1

− 1

24

∫ t

0

[

∫ s1

0

A(s2) ds2, [

∫ s1

0

A(s2) ds2, [

∫ s1

0

A(s2) ds2, A(s1)]]] ds1

+
1

4

∫ t

0

[

∫ s1

0

[

∫ s2

0

A(s3) ds3, A(s2)] ds2, A(s1)] ds1 + · · · .

(3.24)

The terms Π[1], Π[2], Π[3] · · · obtained by Picard iteration are rearranged according

to the number of integrals and commutators. To obtain Hj , (j = 0, 1, 2 . . . ), it can

be written as

Π =
∞∑
j=0

Hj(t), (3.25)

where each Hj include exactly (j + 1) integrals and j commutators [59]. Thus

H0(t) =

∫ t

0

A(s1) ds1, (3.26)
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H1(t) = −1

2

∫ t

0

[∫ t1

0

A(s2) ds2, A(s1)

]
ds1, (3.27)

H2(t) =
1

12

∫ t

0

[∫ t1

0

A(s2) ds2,

[∫ t1

0

A(s2) ds2, A(s1)

]]
ds1

+
1

4

∫ t

0

[∫ t1

0

[∫ t2

0

A(s3) ds3, A(s2)

]
ds2, A(s1)

]
ds1,

(3.28)

H3(t) = − 1

24

∫ t

0

[∫ s1

0

[∫ s2

0

A(s3) ds3,

[∫ s2

0

A(s3) ds3, A(s2)

]]
ds2, A(s1)

]
ds1

− 1

24

∫ t

0

[∫ s1

0

[∫ s2

0

A(s3) ds3, A(s2)

]
ds2,

[∫ s1

0

A(s2) ds2, A(s1)

]]
− 1

24

∫ t

0

[∫ s1

0

A(s2) ds2,

[∫ s1

0

[∫ s2

0

A(s3) ds3, A(s2)

]
ds2, A(s1)

]]
ds1

− 1

8

∫ t

0

[∫ s1

0

A(s2) ds2,

[∫ s1

0

A(s2) ds2,

[∫ s1

0

A(s2) ds2, A(s1)

]]]
ds1,

(3.29)

and so on. Equation (3.25) is a value of the approximate solution of the system of

differential equations (3.9).

3.3.1 Multivariate Quadrature

In previous sections, we applied Magnus expansion technique and obtained un-

knowns in terms of integrals. These integrals can be approximated using quadrature

technique. The details concerning Gauss-Legendre quadrature formulation of int-

grals are explained below.

Gauss-Legendre Quadrature

The Legendre polynomial of degree n, denoted Pn(x), is usually defined on the

symmetric interval [−1, 1]. However, if we shift this interval to [0, 1], then the

Legendre polynomial, denoted by P ∗n(x), is shifted by 2x− 1 in Pn(x), so that

P ∗n(x) = Pn(2x− 1).
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First few value of P ∗n(x) are [60]

P ∗0 (x) = 1

P ∗1 (x) = 2x− 1

P ∗2 (x) = 6x2 − 6x+ 1

P ∗3 (x) = 20x3 − 30x2 + 12x− 1.

Note that P ∗1 (x), the Legendre polynomial of degree one is zero at

x =
1

2
, (3.30)

and P ∗2 (x), the Legendre polynomial of degree two is zero at

x1 =
1

2
−
√

3

6
, x2 =

1

2
+

√
3

6
. (3.31)

The values given in (3.30) and (3.31) are knowns as the roots of Legendre poly-

nomials of degree one and two, respectively. Likewise, we can find the roots of

P ∗3 (x).

3.3.2 Second Order Magnus Series Expansion Method (MG2)

Let us relabel the multiple integrals as Hi(t) for i = 1, 2, · · · , so we have

Π = H1, (3.32)

where the first term is

H1(t) =

∫ t

0

A(s1) ds1.

We want to use the multivariate quadrature formulae to approximate the first

integral H1(t), in the Magnus series expansion. The details are given below.

First, we find of equation P ∗1 (x) = 0 which is c1 = 1
2
, then, the cardinal Lagrange

interpolation polynomial will be applied.
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Definition 3.1. Suppose that xi, for i = 1, 2, 3...., n are the roots of an n-degree

Legender polynomial P ∗n(x), and that for each i = 1, 2, 3....., n the weights bi are

defined by

bi =

∫ 1

0

lj(x), (3.33)

where

lj(x) = Πn
j=1
j 6=i

x− ci
ci − cj

, (3.34)

are called lagrange interpolation polynomial.

If Φ(x) is any polynomial of degree less than 2n, then the Gauss-Legendre integral

formula ∫ 1

0

Φ(x) ds =
n∑
i=1

biΦ(ci), (3.35)

is defined in [61].

So, the cardinal lagrange interpolation polynomial in (3.34) gives

l1(x) =
x− c2

c1 − c2

= 2x. (3.36)

Now, we calculate the approximation Ai = hA(cih), for i = 1, 2, · · · , v and form

the quadrature

H(t) =
∑
i∈Cn

s

biL(Ai1 , Ai2 , ...Ais). (3.37)

The approximation for the function A(t) at the root c1 is given by A1 = hA(h
2
).

For the multivariate quadrature of the first integral H1(t), the function L is

L(A(s1)) = A(s1). The weights bi can be found by integration according to (3.33),

that is

b1 =

∫ 1

0

l1(s1) ds1 =
1

2
. (3.38)

Hence, the multivariate quadrature by using Gauss-Legendre points for H1(t)

becomes

H1(t) = b1L(A1) = A1. (3.39)
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By using (3.39) into (3.32), we find

Π = hA(
h

2
). (3.40)

As a result, the second order Magnus series expansion method, with x(tn) = xn

and h = tn+1 − tn is as [45]

A1 = hA(tn +
h

2
),

Π[2] = hA(tn +
h

2
),

xn+1 = exp(Π[2])xn.

(3.41)

3.3.3 Fourth Order Magnus Series Expansion Method (MG4)

Similarly, for fourth order Magnus expansion method, we take multiple integrals as

Hi(t) for i = 1, 2, · · · , so we have

Π = H1 −
1

2
H2 +

1

12
H3 +

1

4
H4. (3.42)

We want to use the multivariate quadrature formulae to approximate the first four

integrals Hi(t), i = 1, 2, 3, 4 in the Magnus series expansion. The roots in the

Legendre polynomial P ∗2 (x) are c1 = 1
2
−
√

3
6

and c2 = 1
2

+
√

3
6

. So, the cardinal

lagrange interpolation polynomial in (3.34) are

l1(x) =
x− c2

c1 − c2

= −
√

3x+
1

2
(
√

3 + 1), (3.43)

and

l2(x) =
x− c1

c2 − c1

=
√

3x− 1

2
(
√

3− 1). (3.44)

Furthermore, the approximation for the function A(t) at the two roots c1 and c2 are

given by A1 = hA
(

(1
2
−
√

3
6

)h
)

and A2 = hA
(

(1
2

+
√

3
6

)h
)

. For the multivariate

quadrature of the first integral H1(t), the function L is L(A(s1)) = A(s1), and the

set of combination of s tuples value is given by Cv
s = C2

1 = {(1), (2)}. The weights

bi can now be found by integration according to (3.33), as
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b1 =

∫ 1

0

l1(s1) ds1 =
1

2
,

b2 =

∫ 1

0

l2(s2) ds2 =
1

2
.

Hence, from (3.37) the multivariate quadrature by using Gauss-Legendre points

for H1(t) leads to

H1(t) = b1L(A1) + b2L(A2) =
1

2
A1 +

1

2
A2. (3.45)

Similarly, by using (3.37) for the second integral H2(t), the multivariate quadrature

can be found as

H2(t) = b(1,2)L(A1, A2) + b(2,1)L(A2, A1) = b(1,2)[A2, A1] + b(2,1)[A1, A2],

or

H2(t) = (b(1,2) − b(2,1))[A2, A1] = −
√

3

6
[A2, A1]. (3.46)

Accordingly, third integral H3(t), we get

H3(t) = b(1,1,2)L(A1, A1, A2) + b(1,2,1)L(A1, A2, A1) + b(2,1,1)L(A2, A1, A1)

+ b(2,2,1)L(A2, A2, A1) + b(2,1,2)L(A2, A1, A2) + b(1,2,2)L(A1, A2, A2)

= (b(2,1,1) − b(1,1,2))[[A2, A1], A1] + (b(2,2,1) − b(1,2,2))[[A2, A1], A2],

or

H3(t) =

(√
3

16
+

3

80

)
[[A2, A1], A1] +

(√
3

16
− 3

80

)
[[A2, A1], A2]. (3.47)

Finally, the integral for H4(t) reveals

H4(t) = (b(1,2,1) − b(1,1,2))[A1, [A2, A1]] + (b(2,2,1) − b(2,1,2))[A2, [A2, A1]],

or

H4(t) =

(√
3

48
− 3

80

)
[A1, [A2, A1]] +

(√
3

48
+

3

80

)
[A2, [A2, A1]]. (3.48)
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On using (3.45), (3.46), (3.47) and (3.48) into (3.42), we obtain

Π =
1

2
(A1 + A2) +

√
3

12
[A2, A1] +

1

80
[[A2, A1], A1]− 1

80
[[A2, A1], A2] · · · . (3.49)

The linear combinations of integrals H3(t) and H4(t) do not affect the result of

the fourth order Magnus series expansion method. Thus, if the last two terms in

the expansion are neglected, the 4th order Magnus series expansion is obtained as

follows:

Π[4] =
1

2
(A1 + A2) +

√
3

12
[A2, A1] +O(t5).

As a result, the fourth order Magnus series expansion method, with x(tn) = xn

and h = tn+1 − tn is as [45]

A1 = A

(
tn +

(
1

2
−
√

3

6

)
h

)
,

A2 = A

(
tn +

(
1

2
+

√
3

6

)
h

)
,

Π[4] =
1

2
h(A1 + A2) +

√
3

12
h2[A2, A1],

xn+1 = exp(Π[4])xn.

(3.50)

3.4 Magnus Series Expansion Method for Non

-Homogeneous Linear Differential Systems

In this section, the transformation given for non-homogeneous differential system

by Blanes and Ponsoda [51] will be focused .

Consider a non-homogeneous linear differential system

x′(t) = H(t)x(t) + g(t), x(0) = x0, (3.51)
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where x(t), g(t) are column matrices. We solve this system by using Magnus

expansion technique. We rewrite the above system as

x(t)

1

′ =
H(t) g(t)

0T 0

x(t)

1

 , (3.52)

subject to conditions

x1

1

 =

x0

1

 ,
where A(t)

A(t) =

H(t) g(t)

0T 0

 . (3.53)

Example 3.1 Consider a system of equations with initial conditions as discussed

in [62]

x′1(t) = x2(t),

x′2(t) = −0.9999x1(t)− 100x2(t),

x1(0) = 1, x2(0) = 0.

(3.54)

We solve this system using Magnus expansion technique and then compare the

solution with exact solution. The exact solution of this system is

x1(t) = −0.00010002000400080088e−99.99t + 1.000100020004001e−0.009999999999990905t,

x2(t) = 0.010001000200040078e−99.99t − 0.010001000200040078e−0.009999999999990905t.

To apply Magnus expansion method, first we rewrite the above system asx′1
x′2

 =

 0 1

−0.9999 −100

x1

x2

 , (3.55)
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subject to conditions

x1

x2

 =

1

0

 ,
which imply

X ′ = AX,

where

A =

 0 1

−0.9999 −100

 ,
and

X =

x1

x2

 .

Now applying the MG2, we have

xn+1 = exp(Π[2])xn,

where

Π[2] = hA(tn +
h

2
),

in which h = tn+1 − tn and xn+1 = x(tn+1).

By taking different values of t ∈ [0, 1], such that tn = t0 + nh, the follwoing tables

3.1 and 3.2 are genrated.
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Table 3.1: For h= 0.0625, iteration of Example 3.1 by MG2 method

t1 = t0 + h t2 = t1 + h

A1

 0 0.0625

−1 −0.625

  0 0.0625

−1 −0.625



exp(Π[2])

 0.97448 0.04599

−0.73590 0.51454

  0.97448 0.04599

−0.73590 0.51454


xn+1

= exp(Π[2])xn
x1 = exp(Π[2])x0 x2 = exp(Π[2])x1

xn+1 x1 =

 0.48724

−0.36795

 x2 =

 0.45788

−0.54789



Table 3.2: For h=0.125, iteration of Example 3.1 by MG2 method

t1 = t0 + h t2 = t1 + h

A1

 0 0.125

−2 −1.25

  0 0.125

−2 −1.25



exp(Π[2])

 0.91577 0.06848

−1.09579 0.23090

  0.91577 0.06848

−1.09579 0.23090


xn+1

= exp(Π[2])xn
x1 = exp(Π[2])x0 x2 = exp(Π[2])x1

xn+1 x1 =

 0.45789

−0.5479

 x2 =

 0.38179

−0.62827


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Now by using these t1, t2, · · · , t5 in exact solution. The comparison is given in the

tables 3.3 and 3.4.

Table 3.3: For h = 0.0625, the approximate and real solutions and absolute
error values of Example 3.1 obtained from the MG2 method

t x1(t) x1(t)

Real Approximate Error

0.0625 0.48724 0.48724 0

0.125 0.45788 0.45788 0

0.1875 0.42100 0.42100 0

0.25 0.38179 0.38179 0

0.3125 0.34316 0.34316 0

Table 3.4: For h = 0.125, the approximate and real solutions and absolute
error values of Example 3.1 obtained from the MG2 method

t x1(t) x1(t)

Real Approximate Error

0.125 0.45788 0.45788 0

0.25 0.38179 0.38179 0

0.375 0.30661 0.30661 0

0.5 0.24220 0.24220 0

0.625 0.18988 0.18988 0

Example 3.2 Consider a differential equation with initial conditions as discussed

in [63]

x′′(t) + 10x′(t) + 16x(t) = 0,

x1(0) = 0.5, x2(0) = 0.
(3.56)
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We solve this system using Magnus expansion technique and then compare the

solution with exact solution. The exact solution of this system is

x =
2

3
e−2t − 1

6
e−8t.

To apply Magnus expansion method, first we rewrite (3.56) as

x = x1,

x′1 = x2,

x′2 = −10x2 − 16x1.

(3.57)

Equation (3.57) can be written as

x′1
x′2

 =

 0 1

−16 −10

x1

x2

 , (3.58)

subject to conditions

x1

x2

 =

0.5

0

 ,
which imply

X ′ = AX,

where

A =

 0 1

−16 −10

 ,
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and

X =

x1

x2

 .
Now applying the MG2, we have

xn+1 = exp(Π[2])xn,

where

Π[2] = hA(tn +
h

2
),

in which h = tn+1 − tn and xn+1 = x(tn+1).

By taking different values of t ∈ [0, 1], such that tn = t0 + nh, the tables 3.5 and

3.6 are genrated.

Table 3.5: For h= 0.0625, iteration of Example 3.2 by MG2 method

t1 = t0 + h t2 = t1 + h

A1

 0 0.0625

−0.062493 −6.25

  0 0.0625

−0.062493 −6.25



exp(Π[2])

 0.99947 0.00997

−0.00997 0.00183

  0.99947 0.00997

−0.00997 0.00183


xn+1

= exp(Π[2])xn
x1 = exp(Π[2])x0 x2 = exp(Π[2])x1

xn+1 x1 =

 0.99947

−0.00997

 x2 =

 0.99885

−0.00997


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Table 3.6: For h= 0.125, iteration of Example 3.2 by MG2 method

t1 = t0 + h t2 = t1 + h

A1

 0 0.125

−0.1249875 −12.5

  0 0.125

−0.1249875 −12.5



exp(Π[2])

 0.99885 0.00998

−0.00998 −0.00009

  0.99885 0.00998

−0.00998 −0.00009


xn+1

= exp(Π[2])xn
x1 = exp(Π[2])x0 x2 = exp(Π[2])x1

xn+1 x1 =

 0.99885

−0.00998

 x2 =

 0.99760

−0.00997



Now by using these t1, t2, · · · , t5 in exact solution. The comparison is given in the

tables 3.7 and 3.8.

Table 3.7: For h = 0.0625, the approximate and real solutions and absolute
error values of Example 3.2 obtained from the MG2 method

t x1(t) x1(t)

Real Approximate Error

0.0625 0.99947 0.99947 0

0.125 0.99885 0.99885 0

0.1875 0.99882 0.99882 0

0.25 0.99760 0.99760 0

0.3125 0.99697 0.99697 0
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Table 3.8: For h = 0.125, the approximate and real solutions and absolute
error values of example 3.2 obtained from the MG2 method

t x1(t) x1(t)

Real Approximate Error

0.125 0.99885 0.99885 0

0.25 0.99760 0.99760 0

0.375 0.99635 0.99635 0

0.5 0.99511 0.99510 0

0.625 0.99386 0.99385 0

Example 3.3 Consider a system of equations with initial conditions as discussed

in [64]

x′1(t) = 9x1(t) + 24x2(t) + 5 cos(t)− 1

3
sin(t),

x′2(t) = −24x1(t)− 51x2(t)− 9 cos(t) +
1

3
sin(t),

x1(0) =
4

3
, x2(0) =

2

3
.

(3.59)

We solve this system using Magnus expansion technique and then compare the

solution with exact solution. The exact solution of this system is

x1(t) = 2e−3t − e−39t +
1

3
cos(t),

x2(t) = −e−3t + 2e−39t − 1

3
cos(t).

To apply Magnus expansion method, first we rewrite the above system as


x1

x2

1


′

=


9 24 5 cos(t)− 1

3
sin(t)

−24 −51 −9 cos(t) + 1
3

sin(t)

0 0 0



x1

x2

1

 , (3.60)
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subject to conditions


x1

x2

1

 =


4
3

2
3

1

 ,
which imply

X ′ = AX,

where

A =


9 24 5 cos(t)− 1

3
sin(t)

−24 −51 −9 cos(t) + 1
3

sin(t)

0 0 0

 ,
and

X =


x1

x2

1

 .

Now applying the MG4, we have

xn+1 = exp(Π[4])xn,

where

Π[4] =
1

2
h(A1 + A2) +

√
3

12
h2[A2, A1],
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and

A1 = A

(
tn +

(
1

2
−
√

3

6

)
h

)
,

A2 = A

(
tn +

(
1

2
+

√
3

6

)
h

)
,

in which h = tn+1 − tn and xn+1 = x(tn+1).

By taking different values of t ∈ [0, 1], such that tn = t0 + nh, the table 3.9 and

3.11 are genrated.

Table 3.9: For h=0.0625, iteration of Example 3.3 by MG4 method

t1 = t0 + h t2 = t1 + h

A1


9 24 4.96046

−24 −51 −8.94900

0 0 0




9 24 4.90639

−24 −51 −8.86825

0 0 0



A2


9 24 4.93161

−24 −51 −8.90664

0 0 0




9 24 4.86645

−24 −51 −8.80586

0 0 0



Π[4]


0.5625 1.5 0.30870

−1.5 −3.1875 −0.55716

0 0 0




0.5625 1.5 0.30476

−1.5 −3.1875 −0.55107

0 0 0


xn+1

= exp(Π[4])xn
x1 = exp(Π[4])x0 x2 = exp(Π[4])x1

xn+1 x1 =


1.90178

−0.98520

1

 x2 =


1.69471

−0.99962

1



Now by using these t1, t2, · · · , t5 in exact solution. The comparison is given in the

table 3.10.
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Table 3.10: For h= 0.0625, the approximate and real solutions and absolute
error values of Example 3.3 obtained from the MG4 method

t x1(t) x1(t) x2(t) x2(t) x1(t) x2(t)

Real Approximate Real Approximate Error Error

0.0625 1.9033 1.9017 -0.9869 -0.9852 0.0158 -0.0175

0.125 1.6976 1.6947 -1.0027 -0.9996 0.0296 -0.0313

0.1875 1.4663 1.4620 -0.8959 -0.8914 0.0429 -0.0444

0.25 1.2676 1.2620 -0.7952 -0.7894 0.0561 -0.0574

0.3125 1.1003 1.0935 -0.7087 -0.7019 0.0682 -0.0686

Table 3.11: For h=0.125, iteration of Example 3.3 by MG4 method

t1 = t0 + h t2 = t1 + h

A1


9 24 4.89250

−24 −51 −8.84673

0 0 0




9 24 4.71921

−24 −51 −8.56736

0 0 0



A2


9 24 4.80164

−24 −51 −8.70209

0 0 0




9 24 4.58544

−24 −51 −8.34489

0 0 0



Π[4]


1.125 3 0.59989

−3 −6.375 −1.08508

0 0 0




1.125 3 0.57222

−3 −6.375 −1.03867

0 0 0


xn+1

= exp(Π[4])xn
x1 = exp(Π[4])x0 x2 = exp(Π[4])x1

xn+1 x1 =


1.69084

−0.99506

1

 x2 =


1.25522

−0.78194

1


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Similarly by using these t1, t2, · · · , t5 in exact solution. The comparison is given in

the table 3.12.

Table 3.12: For h= 0.125, the approximate and real solutions and absolute
error values of Example 3.3 obtained from the MG4 method

t x1(t) x1(t) x2(t) x2(t) x1(t) x2(t)

Real Approximate Real Approximate Error Error

0.125 1.6976 1.6908 -1.0027 -0.9950 0.0683 −0.0769

0.25 1.2676 1.2552 -0.7952 -0.7819 0.1242 −0.1328

0.375 0.9594 0.9290 -0.6348 -0.6093 0.3043 −0.2547

0.5 0.7387 0.7114 -0.5156 -0.4896 0.2729 −0.2597

0.625 0.5770 0.5467 -0.4236 -0.3939 0.3028 −0.2972

Example 3.4 Consider a system of equations with initial conditions as discussed

in [65]

x′1(t) = −3x1(t) + 3x2(t) + 3 cos(t)− 3 sin(t),

x′2(t) = 2x1(t)− 3x2(t)− cos(t) + 3 sin(t),

x1(0) = 1, x2(0) = 0.

(3.61)

We solve this system using Magnus expansion technique and then compare the

solution with exact solution. The exact solution of this system is

x1(t) = cos(t), x2(t) = sin(t). (3.62)

To apply Magnus expansion method, first we rewrite the above system as


x1

x2

1


′

=


−3 3 3 cos(t)− 3 sin(t)

2 −3 − cos(t) + 3 sin(t)

0 0 0



x1

x2

1

 , (3.63)

subject to conditions 
x1

x2

1

 =


1

0

1

 ,
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which imply

X ′ = AX,

where

A =


−3 3 3 cos(t)− 3 sin(t)

2 −3 − cos(t) + 3 sin(t)

0 0 0

 ,

and

X =


x1

x2

1

 .
Now applying the MG4, we have

xn+1 = exp(Π[4])xn,

where

Π[4] =
1

2
h(A1 + A2) +

√
3

12
h2[A2, A1],

and

A1 = A

(
tn +

(
1

2
−
√

3

6

)
h

)
,

A2 = A

(
tn +

(
1

2
+

√
3

6

)
h

)
,

in which h = tn+1 − tn and xn+1 = x(tn+1).

By taking different values of t ∈ [0, 1], such that tn = t0 + nh, the table 3.13 and

3.15 are genrated.
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Table 3.13: For h=0.0625, iteration of Example 3.4 by MG4 method

t1 = t0 + h t2 = t1 + h

A1


−3 3 2.80676

2 −3 −0.81066

0 0 0



−3 3 2.60256

2 −3 −0.61817

0 0 0



A2


−3 3 2.64663

2 −3 −0.65911

0 0 0



−3 3 2.43435

2 −3 −0.46115

0 0 0



Π[4]


−0.1875 0.1875 0.1698

0.125 −0.1875 −0.0454

0 0 0



−0.1875 0.1875 0.1568

0.125 −0.1875 −0.0332

0 0 0


xn+1

= exp(Π[4])xn
x1 = exp(Π[4])x0 x2 = exp(Π[4])x1

xn+1 x1 =


0.99048

−0.07179

1

 x2 =


0.98227

−0.14147

1



Now by using these t1, t2, · · · , t4 in exact solution. The comparison is given in the

table 3.14.

Table 3.14: For h= 0.0625, the approximate and real solutions and absolute
error values of Example 3.4 obtained from the MG4 method

t x1(t) x1(t) x2(t) x2(t) x1(t) x2(t)

Real Approximate Real Approximate Error Error

0.0625 0.9980 0.9904 0.0624 0.0717 0.0756 −0.0934

0.125 0.9921 0.9827 0.1246 0.1414 0.0941 −0.168

0.1875 0.9824 0.9746 0.1864 0.2104 0.0785 −0.2406

0.25 0.9689 0.3366 0.2474 0.7946 0.6322 -0.5472
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Table 3.15: For h=0.125, iteration of Example 3.4 by MG4 method

t1 = t0 + h t2 = t1 + h

A1


−3 3 2.50346

2 −3 −0.52720

0 0 0



−3 3 2.06735

2 −3 −0.14328

0 0 0



A2


−3 3 2.26018

2 −3 −0.30995

0 0 0



−3 3 1.79490

2 −3 0.08481

0 0 0



Π[4]


−0.1875 0.1875 0.1698

0.125 −0.1875 −0.0454

0 0 0



−0.1875 0.1875 0.1568

0.125 −0.1875 −0.0332

0 0 0


xn+1

= exp(Π[4])xn
x1 = exp(Π[4])x0 x2 = exp(Π[4])x1

xn+1 x1 =


0.96158

0.16144

1

 x2 =


0.93553

0.30669

1



Similarly by using these t1, t2, · · · , t4 in exact solution. The comparison is given in

the table 3.16.

Table 3.16: For h= 0.125, the approximate and real solutions and absolute
error values of Example 3.4 obtained from the MG4 method

t x1(t) x1(t) x2(t) x2(t) x1(t) x2(t)

Real Approximate Real Approximate Error Error

0.125 0.9921 0.9615 0.1246 0.1614 0.3061 0.3677

0.25 0.9689 0.9355 0.2474 0.3066 0.3338 −0.5929

0.375 0.9305 0.9106 0.3662 0.4424 0.1984 0.0616

0.5 0.8775 0.8817 0.4794 0.5706 −0.414 −0.912
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Example 3.5 Consider a system of equations with initial conditions as discussed

in [66]

x′1(t) = −x1(t)− 15x2(t) + 15e−t,

x′2(t) = 15x1(t)− x2(t)− 15e−t,

x1(0) = 1, x2(0) = 1.

(3.64)

We solve this system using Magnus expansion technique and then compare the

solution with exact solution. The exact solution of this system is

x1(t) = x2(t) = e−t. (3.65)

To apply Magnus expansion method, first we rewrite the above system as


x1

x2

1


′

=


−1 −15 15e−t

15 −1 −15e−t

0 0 0



x1

x2

1

 , (3.66)

subject to conditions


x1

x2

1

 =


1

1

1

 ,

which imply

X ′ = AX,

where
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A =


−1 −15 15e−t

15 −1 −15e−t

0 0 0

 ,

and

X =


x1

x2

1

 .

Now applying the MG4, we have

xn+1 = exp(Π[4])xn,

where

Π[4] =
1

2
h(A1 + A2) +

√
3

12
h2[A2, A1],

and

A1 = A

(
tn +

(
1

2
−
√

3

6

)
h

)
,

A2 = A

(
tn +

(
1

2
+

√
3

6

)
h

)
,

in which h = tn+1 − tn and xn+1 = x(tn+1).

By taking different values of t ∈ [0, 1], such that tn = t0 + nh, the table 3.17 and

3.19 are genrated.
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Table 3.17: For h=0.0625, iteration of Example 3.5 by MG4 method

t1 = t0 + h t2 = t1 + h

A1


−1 −15 14.0911

15 −1 −14.0911

0 0 0



−1 −15 10.9117

15 −1 −10.9117

0 0 0



A2


−1 −15 13.4136

15 −1 −13.4136

0 0 0



−1 −15 12.6009

15 −1 −12.6009

0 0 0



Π[4]


−0.062 −0.937 0.864

0.937 −0.062 −0.853

0 0 0



−0.0625 −0.937 0.721

0.937 −0.062 −0.749

0 0 0


xn+1

= exp(Π[4])xn
x1 = exp(Π[4])x0 x2 = exp(Π[4])x1

xn+1 x1 =


0.99998

0.99998

1

 x2 =


0.99996

0.99997

1



Now by using these t1, t2, · · · , t4 in exact solution. The comparison is given in the

table 3.18.

Table 3.18: For h= 0.0625, the approximate and real solutions and absolute
error values of Example 3.5 obtained from the MG4 method

t x1(t) x1(t) x2(t) x2(t) x1(t) x2(t)

Real Approximate Real Approximate Error Error

0.0625 0.93941 0.99998 0.93941 0.99998 −0.6057 −0.6057

0.125 0.8824 0.9999 0.8824 0.9999 -0.1174 -0.1174

0.1875 0.8290 0.9999 0.8290 0.9999 -0.1709 -0.1709

0.25 0.7788 0.9999 0.7788 0.9999 -0.2211 -0.2211
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Table 3.19: For h=0.125, iteration of Example 3.5 by MG4 method

t1 = t0 + h t2 = t1 + h

A1


−1 −15 12.89223

15 −1 −12.89223

0 0 0



−1 −15 11.37735

15 −1 −11.37735

0 0 0



A2


−1 −15 11.99482

15 −1 −11.99482

0 0 0



−1 −15 10.58539

15 −1 −10.58539

0 0 0



Π[4]


−0.125 −1.875 1.58377

1.875 −0.125 −1.52306

0 0 0



−0.125 −1.875 1.39767

1.875 −0.125 −1.34409

0 0 0


xn+1

= exp(Π[4])xn
x1 = exp(Π[4])x0 x2 = exp(Π[4])x1

xn+1 x1 =


0.99998

0.99998

1

 x2 =


0.99997

0.99996

1



Similarly by using these t1, t2, · · · , t4 in exact solution. The comparison is given in

the table 3.20.

Table 3.20: For h= 0.125, the approximate and real solutions and absolute
error values of Example 3.5 obtained from the MG4 method

t x1(t) x1(t) x2(t) x2(t) x1(t) x2(t)

Real Approximate Real Approximate Error Error

0.125 0.8824 0.9999 0.8824 0.9999 -0.1174 -0.1174

0.25 0.7788 0.9999 0.7788 0.9999 -0.2211 -0.2211

0.375 0.6872 0.9999 0.6872 0.9999 -0.3126 -0.3126

0.5 0.6065 0.9999 0.6065 0.9999 -0.3934 -0.3934



Chapter 4

Acoustic Propagation with

Arbitrary Expansion Chamber

In this chapter, we consider the acoustic wave propagation and scattering in a

waveguide having arbitrary configuration of expansion chamber. The governing

boundary value problem is solved by using Multimodal admittance method. The

boundary value problem involved Helmholtz equation in accompany with rigid, soft

and rigid-soft boundary conditions. Thus the use of Multimodal procedure leads to

the accurate solution problem. The section wise detail is given as follows: Section

4.2 contains the mathematical formulation and solution of soft-soft, rigid-rigid and

rigid-soft problem. The computational results and discussion is provided in Section

4.3.

4.1 Problem Formulation

Consider a two dimensional waveguide extended infinitely along x-direction and

contains finite height along y-direction. The inside of the waveguide is filled with

compressible fluid of density ρ and sound speed c. The physical configuration of

the duct is as shown Figuer 4.1. The walls of waveguide are contained arbitrary

geometrical configuration.

38
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Figure 4.1: Geometry of the 2D waveguide.

The acoustic propagation in waveguide can be expressed using wave equation

∇2Φ(x, y, t) =
1

c2

∂2Φ

∂t2
, (4.1)

where Φ(x, y, t) is the time dependent field potential. The acoustic pressure and

normal velocity vectors are related to the field potential by the relations

p = −ρ∂Φ

∂t
, (4.2)

and

v = ∇Φ, (4.3)

respectively. Assuming the harmonic time dependence e−iωt in which ω is radiant

frequency, we write

Φ(x, y, t) = φ(x, y)e−iωt, (4.4)

where φ(x, y) is the time independent field potential. By using (4.4) into (4.1), we

find

{
∂2

∂x2
+

∂2

∂y2
+ k2

}
φ(x, y) = 0, (4.5)

where k =
ω

c
is the wave number. The boundary conditions of the duct are assumed

to contain three categories:
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1) Soft-Soft.

2) Rigid-Rigid.

3) Soft-Rigid.

The solution of the governing boundary value problems with aforementioned

condition is discussed in next section.

4.2 Multimodal Solution

In this section we formulate multimodal solution subject to soft-soft, rigid-rigid

and soft-rigid settings.

4.2.1 Soft-Soft Case

The acoustically soft boundary condition of waveguide gives

Φ(x, y) = 0, at y = 0,

Φ(x, y) = 0, at y = b.
(4.6)

Note that (4.6) is known as Dirichlet bounday condition.

Eigenvalue Problem

First, we determine the transverse mode through the respective transverse eigen-

value problem, that is

d2g

dy2
+ γ2g = 0, (4.7)

g(x, h1) = 0, (4.8)

g(x, h2) = 0. (4.9)



Acoustic Propagation with Arbitrary Expansion Chamber 41

By using (4.7), we obtain

g(x, y) = A cos γy +B sin γy, (4.10)

where A and B are arbitrary constants. By using boundary conditions (4.8), we

find

A = −B sin(γh1)

cos(γh1)
, (4.11)

which on substituting into (4.10) leads to

g(x, y) =
B

cos(γh1)
sin(γ(y − h1)). (4.12)

Now by invoking (4.12), for non trival solution (4.9), reveals

sin(γ(h2 − h1)) = 0,

which gives γ ≡ γn =
nπ

h2 − h1

;n = 1, 2 · · · and the eigenfunctions

g(x, y) ≡ gn(x, y) = sin

(
nπ

h(x)
(y − h1)

)
, (4.13)

where h(x) = h2(x)− h1(x). These eigenfunctions are orthogonal in nature and

satisfy orthogonality relation

∫ h2

h1

gmgn dy =
h

2
δmnεn, (4.14)

where

εn =

2, n = 0,

0.

The corresponding orthonormal functions are found by dividing the respective

weights. Thus, the orthonormal functions are

φn =

√
2

h(x)εn
gn(x, y); n = 0, 1, 2..., (4.15)
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which satisfy ∫ h2

h1

φnφm dy = δmn. (4.16)

4.2.2 Rigid-Rigid Case

The acoustically rigid boundary condition of waveguide gives

∂Φ

∂y
(x, y) = 0, at y = 0,

∂Φ

∂y
(x, y) = 0, at y = b.

(4.17)

Note that (4.17) is known as Neumann bounday condition.

Eigenvalue Problem

First, we determine the transverse mode through the respective transverse eigen-

value problem, that is

d2g

dy2
+ γ2g = 0, (4.18)

∂g

∂y
(x, h1) = 0, (4.19)

∂g

∂y
(x, h2) = 0. (4.20)

By using (4.18), we obtain

g(x, y) = A cos γy +B sin γy, (4.21)

where A and B are arbitrary constants. By using boundary conditions (4.19), we

find

A = B
cos(γh1)

sin(γh1)
, (4.22)

which on substituting into (4.21) leads to

g(x, y) =
B

sin(γh1)
cos(γ(y − h1)). (4.23)
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Now by invoking (4.23), for non trival solution (4.20), reveals

sin(γ(h2 − h1)) = 0,

which gives γ ≡ γn =
nπ

h2 − h1

;n = 0, 1, 2 · · · and the eigenfunctions

g(x, y) ≡ gn(x, y) = cos

(
nπ

h(x)
(y − h1)

)
, (4.24)

where h(x) = h2(x)− h1(x). These eigenfunctions are orthogonal in nature and

satisfy orthogonality relation

∫ h2

h1

gmgn dy =
h

2
δmnεn, (4.25)

where

εn =

2, n = 0,

0.

The corresponding orthonormal functions are found by dividing the respective

weights. Thus, the orthonormal functions are

φn =

√
2

h(x)εn
gn(x, y); n = 1, 2..., (4.26)

which satisfy ∫ h2

h1

φnφm dy = δmn. (4.27)

4.2.3 Soft-Rigid Case

The acoustically soft-rigid boundary condition of waveguide gives

Φ(x, y) = 0, at y = 0,

∂Φ

∂y
(x, y) = 0, at y = b.

(4.28)

Note that (4.28) is known as Dirichlet-Neumann bounday condition.
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Eigenvalue Problem

In this technique, first we determine the transverse mode through the respective

transverse eigen value problem, that is

d2g

dy2
+ γ2g = 0, (4.29)

g(x, h1) = 0, (4.30)

∂g

∂y
(x, h2) = 0. (4.31)

By using (4.29), we obtain

g(x, y) = A cos γy +B sin γy, (4.32)

where A and B are arbitrary constants. By using boundary conditions (4.30), we

find

A = −B sin(γh1)

cos(γh1)
, (4.33)

which on substituting into (4.32) leads to

g(x, y) =
B

cos(γh1)
sin(γ(y − h1)). (4.34)

Now by invoking (4.34), for non trival solution (4.31), reveals

cos(γ(h2 − h1)) = 0,

which gives γ ≡ γn =
(n+ 1)π

2(h2 − h1)
;n = 1, 2 · · · and the eigenfunctions

g(x, y) ≡ gn(x, y) = sin

(
(n+ 1)π

2h(x)
(y − h1)

)
, (4.35)

where h(x) = h2(x)− h1(x). These eigenfunctions are orthogonal in nature and

satisfy orthogonality relation

∫ h2

h1

gmgn dy =
h

2
δmn. (4.36)
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The corresponding orthonormal functions are found by dividing the respective

weights. Thus, the orthonormal functions are

φn =

√
2

h(x)
gn(x, y); n = 1, 2..., (4.37)

which satisfy ∫ h2

h1

φnφm dy = δmn. (4.38)

To project solution, we consider first order evaluation Helmholtz equation along

x-direction by assuming
∂φ

∂x
= Ψ. (4.39)

On using (4.39) into (4.5), it is straightforward to write

∂Ψ

∂x
= −∂

2φ

∂y2
− k2. (4.40)

By combining (4.39) and (4.40)

∂

∂x

Φ

Ψ

 =

 0 1

− ∂2

∂y2
− k2 0

Φ

Ψ

 . (4.41)

Now the transverse modes of the waveguide are used to project Φ and Ψ as

Φ =
∞∑
n=1

an(x)φn(x, y), (4.42)

Ψ =
∞∑
n=1

bn(x)φn(x, y), (4.43)

where an(x) and bn(x) are unknowns. These can be found through the coupled

mode equations. To formulate these equations, we multiply (4.39) with φm(x, y)

and integrate over h1 ≤ y ≤ h2 to get

∫ h2

h1

∂Φ

∂x
φm dy =

∫ h2

h1

Ψφm dy. (4.44)



Acoustic Propagation with Arbitrary Expansion Chamber 46

On substituting (4.42) and (4.43), (4.44) gives

∞∑
n=1

∫ h2

h1

{a′n(x)φn(x, y) + an(x)φ′n(x, y)}φm(x, y) dy =
∞∑
n=1

∫ h2

h1

bn(x)

φn(x, y)φm(x, y) dy,

(4.45)

or
∞∑
n=1

a′n(x)

∫ h2

h1

φnφm dy +
∞∑
n=1

an(x)

∫ h2

h1

φ′nφm dy =
∞∑
n=1

bn(x)∫ h2

h1

φnφm dy,

(4.46)

which on using (4.16) leads to

∞∑
n=1

a′n(x)δmn +
∞∑
n=1

an(x)Fmn =
∞∑
n=1

bn(x)δmn, (4.47)

where F is a different for different boundary conditions.

• For Soft-Soft Case

Fmn =

−
mn

m2−n2
2
h
[(−1)m+nh′2(x)− h′1(x)], m 6= n,

0, m = n.

• For Rigid-Rigid Case

Fmn =

−
m2

m2−n2
2
h
[(−1)m+nh′2(x)− h′1(x)], m 6= n,

1
h(x)

[h′1(x)− (−1)n+mh′2(x)], m = n.

• For Soft-Rigid Case

Fmn =

−
1
h2

(1+m)
(n+m)(2+m+n)

[(1 +m)(1)1+mh′2(x)− (1 + n)h′1(x)], m 6= n,

0, m = n.

Accordingly, we multiply (4.40) with φm and integrate over h1 ≤ y ≤ h2 to obtain

∫ h2

h1

∂Ψ

∂x
φm dy = −

∫ h2

h1

∂2Φ

∂y2
φm dy − k2

∫ h2

h1

Φφm dy. (4.48)
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Applying integration by parts on the first term on right hand side of (4.48) and

then simplifying the resulting leads to

∫ h2

h1

∂Ψ

∂x
φm dy = −γ2

m

∫ h2

h1

Φφm dy − k2

∫ h2

h1

Φφm dy. (4.49)

By invoking (4.42)−(4.43) into (4.49), we find

∞∑
n=1

b′n(x)

∫ h2

h1

φnφm dy = (−γ2
m − k2)

∞∑
n=1

an(x)

∫ h2

h1

φnφm dy

−
∞∑
n=1

bn(x)

∫ h2

h1

φ′nφm dy.

(4.50)

On using (4.16), we get

∞∑
n=1

b′n(x)δmn −
∞∑
n=1

bn(x)Fnm = −k2

∞∑
n=1

anδmn. (4.51)

Now from (4.16) and (4.51), we can write the coupled mode system

a′(x)

b′(x)

 =

 −F I

−K2 F T

a(x)

b(x)

 (4.52)

where K is the diagonal matrix such that Kmn = knδmn with kn =
√
k2 − n2π2

h2
, F

is matrix having entries Fmn and I is identity matrix.

Note that a and b represent vectors with entries an and bn for n = 1, 2..., respectively.

In this way, we get a first order differential system. We cannot treat it as a simple

inital value problems system because of following two reason: first, the problem

is not well posed because of given radiation condition at anechoic interface and

source term at inlet interface and second reason is that the problem is unstable

because of evanescent modes.

Therfore, we apply the admittance matrix method as proposed in [55, 67]. In this

method we defined admittance matrix Y through the relation

b = Y a. (4.53)
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To compute the admittance matrix, we apply Magnus-Möbius scheme [55]. In this

method, we apply numerical integration after descritizing the path between inlet

and anechoic interface into some M points, such that L = x̃1 > x̃2 > · · · > x̃M = 0.

The radiation condition is applied at x̃1 = L. For the given problem, the radiation

condition as defined in [68] is

Y (x = +∞) = Yc = ik. (4.54)

Now to apply the scheme on (4.52), we defined

H(x) =

 −F (x) I

−K2(x) F T (x)

 . (4.55)

On using the Magnus-Möbius scheme, we can writea(x̃n+1)

b(x̃n+1)

 = eΠ(x̃n)

a(x̃n)

b(x̃n)

 . (4.56)

Here the expression for H(x̃n) depends on the scheme defined in Chapter 3.

For scheme of second order

Π(x̃n) = δnH

(
x̃n + x̃n+1

2

)
, (4.57)

where δn = x̃n+1 − x̃n.

For scheme of fourth order

Π(x̃n) =
1

2
δn(H1 +H2) +

√
3

12
δ2
n[H2, H1], (4.58)

where

H1 = H

(
x̃n +

(
1

2
−
√

3

6

)
δn

)
,

and

H2 = H

(
x̃n +

(
1

2
+

√
3

6

)
δn

)
.
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For x̃n, the matrix exponential eΠ(x̃n) can be found as

eΠ(x̃n) =

E1(x̃n) E2(x̃n)

E3(x̃n) E4(x̃n)

 , (4.59)

by using (4.59) into (4.56), we get

a(x̃n+1)

b(x̃n+1)

 =

E1(x̃n) E2(x̃n)

E3(x̃n) E4(x̃n)

a(x̃n)

b(x̃n)

 . (4.60)

Now to get the admittance formulation from (4.53), we can write

b(x̃n) = Y (x̃n)a(x̃n),

b(x̃n+1) = Y (x̃n+1)a(x̃n+1).
(4.61)

By using (4.61) into (4.60)

 a(x̃n+1)

Y (x̃n+1)a(x̃n+1)

 =

E1(x̃n) E2(x̃n)

E3(x̃n) E4(x̃n)

 a(x̃n)

Y (x̃n)a(x̃n)

 , (4.62)

which yield the following equaion

a(x̃n+1) = E1(x̃n)a(x̃n) + E2(x̃n)Y (x̃n)a(x̃n), (4.63)

and

Y (x̃n+1)a(x̃n+1) = E3(x̃n)a(x̃n) + E4(x̃n)Y (x̃n)a(x̃n). (4.64)

Using (4.63) into (4.64), we get

Y (x̃n+1) = [E3(x̃n) + E4(x̃n)Y (x̃n)][E1(x̃n) + E2(x̃n)Y (x̃n)]−1. (4.65)

4.2.4 Reflection and Transmission Matrix

The wave components are divided into right and left going parts as stated in

[69, 70], to obtain the reflection matrix R from the estimated admittance matrix
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Y , we can write

a = a+ + a−,

and

b = Yc(a
+ − a−).

From the definition of reflection matrix a− = Ra+, we get

R = (Yc + Y )−1(Yc − Y ). (4.66)

However, by defining the propagator matrix G in the same way as the Y matrix, it

is possible to derive the transmission matrix at the same time as the Y matrix,

a(x2) = G(x2, x)a(x), (4.67)

G(x2, x2) = I, where I is the identity matrix, and x2 ≥ x. The equation governing

G is then found to be

G′ = −G(−F + Y ), (4.68)

with the initial value G(x2, x = x1) = I, and the transmission matrix is given by

T = G(x2, x = x1)(I +R). (4.69)

4.3 Numerical Results

In this section, the numerical result are presented. The reflection and transmission

are plotted against frequency. For numerical computation, the dimensional height

is defined by h1 = 0, and h2 = 1 + 0.15(1 + cos(πx/b)) and frequency is along

2π ≤ k ≤ 6π. The total number of modes that gives the dimension is 4 and the

number of discretization along −1.2 < x ≤ 1.2 is only 200. Figures 4.2-4.19, display

the scatering against k with different material properties of the bounding walls.

In Figures 4.2-4.7, the absloute value of reflecting modes R11, R22, and R33 and

transmitting modes T11, T22, and T33 are portrayed for the acoustically soft wall
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conditions. From these figures it can seen that the fundamental mode reflection is

almost 0 while the second and third modes contain maximum value in start that

decreases by increasing k.

8 10 12 14
k

5.×10-16

1.×10-15

1.5×10-15

2.×10-15

2.5×10-15

R11

Figure 4.2: The absolute value of R11 against frequency k with soft condition.

8 10 12 14
k

0.02

0.04

0.06

0.08

R22

Figure 4.3: The absolute value of R22 against frequency k with soft condition.
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8 10 12 14
k

0.2

0.4

0.6

0.8

1.0

R33

Figure 4.4: The absolute value of R33 against frequency k with soft condition.

8 10 12 14
k

0.5

1.0

1.5

2.0

T11

Figure 4.5: The absolute value of T11 against frequency k with soft condition.

On the other hand, the transmission is unity for all values k for the fundamental

transmitting wave, see for instance Fig. 4.5. However, the second mode transitting
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modes contain a huge spike over 6 < k < 8 for acoustically soft setting of boundaries,

see Figs. 4.6-4.7.

8 10 12 14
k

0.1

0.2

0.3

T22

Figure 4.6: The absolute value of T22 against frequency k with soft condition.

8 10 12 14
k

0.05

0.10

0.15

0.20

0.25

T33

Figure 4.7: The absolute value of T33 against frequency k with soft condition.
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For rigid-rigid wall conditions, the absloute values of reflecting modes R11, R22 and

R33 and transmitting modes T11, T22 and T33 are portrayed for the acoustically soft

wall condition in Figures 4.8-4.13.

8 10 12 14
k

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R11

Figure 4.8: The absolute value of R11 against frequency k with rigid condition.

8 10 12 14
k

0.05

0.10

0.15

0.20

0.25

R22

Figure 4.9: The absolute value of R22 against frequency k with rigid condition.
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The fundamental reflecting mode is shown in Figure 4.8. Unlike to the soft

conditions, the fundamental mode for rigid case is not zero and comparises the

fluctuating behavior.

8 10 12 14
k

0.2

0.4

0.6

0.8

R33

Figure 4.10: The absolute value of R33 against frequency k with rigid condition.

8 10 12 14
k

2.×10-9

4.×10-9

6.×10-9

8.×10-9

1.×10-8

1.2×10-8

1.4×10-8
T11

Figure 4.11: The absolute value of T11 against frequency k with rigid condition.
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Accordingly, the fluctuating behavior is seen in Figure 4.9 and Figure 4.10. The

transmitting mode against rigid setting is shown in Figures 4.11-4.13. It is observed

that first two transmitting modes shown in Figures 4.11 and 4.12

8 10 12 14
k

2.×10-9

4.×10-9

6.×10-9

8.×10-9

1.×10-8

1.2×10-8
T22

Figure 4.12: The absolute value of T22 against frequency k with rigid condition.

8 10 12 14
k

0.05

0.10

0.15

0.20

T33

Figure 4.13: The absolute value of T33 against frequency k with rigid condition.



Acoustic Propagation with Arbitrary Expansion Chamber 57

are almost zero while third mode is depicted in Figure 4.13 contain a huge spike

over 6 < k < 8.

8 10 12 14
k

0.05

0.10

0.15

0.20

0.25

R11

Figure 4.14: The absolute value of R11 against frequency k with soft-rigid
condition.

8 10 12 14
k

0.02

0.04

0.06

0.08

0.10

R22

Figure 4.15: The absolute value of R22 against frequency k with soft-rigid
condition.
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8 10 12 14
k

0.2

0.4

0.6

0.8

R33

Figure 4.16: The absolute value of R33 against frequency k with soft-rigid
condition.

8 10 12 14
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0.01

0.02

0.03

0.04

T11

Figure 4.17: The absolute value of T11 against frequency k with soft-rigid
condition.
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Figs. 4.15-4.17, the reflection and transmission graph are shown for rigid-soft

setting.

8 10 12 14
k

0.01
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0.03

0.04

0.05

T22

Figure 4.18: The absolute value of T22 against frequency k with soft-rigid
condition.
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T33

Figure 4.19: The absolute value of T33 against frequency k with soft-rigid
condition.



Acoustic Propagation with Arbitrary Expansion Chamber 60

Figures 4.14-4.19 show the absloute values of reflecting modes R11, R22 and R33 and

transmitting modes T11, T22 and T33 are portrayed for the acoustically soft-rigid wall

conditions. The behaviour of scattering modes with soft-rigid conditions is more

different as compared with rigid-rigid with soft-soft conditions. The fundamental

mode contains a spike over 7 < k < 8 which decreases by increasing k with

fluctuations, see Figure 4.14. Likewise the behaviour with different fluctuations is

seen for second reflecting mode, see Figure 4.15. However, Figure 4.16 depicts a

different behaviour. The transmitting modes for soft-rigid case are displayed in

Figures 4.17-4.19. The behaviour of curves seen in Figures 4.17-4.19 comprise a

maximum value in start that decreases by increasing frequency.



Chapter 5

Summary and Conclusion

The chapter wise summary and conclusion of the present study are enclosed in

this chapter. Chapter 1 contain back ground and literature review to the current

study alongwith thesis structure. The details of acoustic scattering are included

in this thesis and a brief overview of the Magnus series expansion have been

discussed. In chapter 2, we have discussed some basic definitions which are useful

in understanding the mathematical modeling and associated physical characteristics

of the work presented in rest of the chapters.

Chapter 3, presents a discussion on the basic development of the Magnus series

expansion on the linear matrix differential equation. The method involves the

derivation of matrix exponential by using Picard iteration. The Magnus method

for order 2 and 4 is derived. The method is then applied to some initial value

problems whose results are compared with analytical solution.

In chapter 4, the investigation of the wave propagation through a expansion chamber

with arbitrary geometrical configuration is exploited. The physical problem are

governed by Helmholtz’s equation and contain boundary wall condition to be

acoustically soft, rigd and soft-rigid. The Multimodal solution is found through

projecting the local transverse modes to determine the coupled mode equation. By

introducing the admittance matrix the Riccati equation is achieved, which is then

61
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integrated by the application of Magnus-Möbius method and radiation conditions.

For a fixed shape of expansion chamber, the scattering modes are shown. It is

observed that by changing the wall conditions the scttering is varied.
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[52] S. Köme, A. Eryılmaz, M. T. Atay and S. Piipponen, Comparative

numerical solutions of stiff ordinary differential equations using Mag-

nus series expansion method, New Trends in Mathematical Sciences,

vol. 3(1), pp. 35-45, (2015).
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